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A semiempirical valence-bond treatment including polar structures has been developed. Explicit
formulas are given for the calculation of energy matrix elements and of charge and spin densities. The
method has been applied to benzyl and allyl radicals and to butadiene.

Es wurde ein semiempirisches Valence-Bond-Verfahren einschlieSlich Polar-Strukturen ent-
wickelt. Explizite Formeln werden fiir die Berechnung von Energiematrixelementen und fiir die
Ladungs- und Spin-Dichte angegeben. Die Methode wurde auf das Benzyl- und das Allyl-Radikal und
auf Butadien angewendet.

On a dévelopé un traitment semi-empirique de la méthode des orbitals de valence avec inclusion
des structures polaires. On donne des formules explicitées pour le calcul des éléments matriciels de
Pénergie et des densités de charge et de spin. On a appliqué la méthode aux radicaux benzylique et
allylique et a la molecule du butadiéne.

Introduction

The semiempirical valence-bond (VB) method has been extensively used in
recent years for the calculation of n-electron charge and spin densities in molecules,
radicals and ions [1, 2, 3]. Most of these calculations do not include polar struc-
tures, and it has been suggested [4] that such simplification, which exaggerates
the amount of electron correlation, can lead to considerable errors in the evaluation
of spin densities.

In the present paper the problem of inclusion of polar structures has been
considered. The method has been applied to a few simple systems for which
results from the a priori VB treatment were available [5], and to benzyl radical,
which had been the object of extensive experimental and theoretical investiga-
tions [4].

Theoretical Considerations

For a molecular system with N (even or odd) electrons, the wave functions are
written in the form

Y= Z Z Cin® (1)

r=11=1

where r labels the electron distribution, k the states and [ the structures. R is the
number of electron distributions and L, the number of structures belonging to the
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r-th distribution. In this work all systems are neutral alternant hydrocarbons
(molecules or radicals) with each carbon atom contributing one orbital to the
n-system. Only non polar and singly polar structures with charges on adjacent
atoms, which we call orthopolar, are included. The number of electrons and avail-
able orbitals are equal and when the geometry of the system is given, the possible
distributions of electrons among the orbitals are easily obtained. For each electron
distribution the structures can be obtained by application of Rumer rules. Of
course if N is odd, a phantom orbit must be included [6]. Doubly occupied and
non occupied orbitals don’t need to be shown on Rumer diagrams.
C,,; are obtained on solving the system of equations

R L e sy s=1...R,
3 3 CulHi-BA=0 T @
Rules to evaluate the matrix elements in Eq. (2) have been reported [2, 7, 8], both
for the case that M = N (M is the number of orbitals appearing in a given structure)
and for M # N. Two different approximations are frequently used when calculating
matrix elements: differential overlap can be completely neglected or terms up to
second order in overlap may be retained.

Following Schug the second approximation has been used; integrals of the
type <a(1)}b(2) ... |0|a’(1)b(2) >, where O is H or 1, have been considered of second
order if a and a’ are next neighbour. To simplify the set up of canonical structures
the following prescriptions were adopted. The available orbitals have been
numbered in such a way that orbitals centred on adjacent atoms have different
parity. The phantom orbit, when necessary, is located in the last position.

All bonds in canonical structures are between an even and an odd orbital. In
the fundamental permutation the orbitals are aligned according to their number,
with an o-spin function coupled with odd orbitals and a S-function with even
orbitals. In ionic structures if p is the empty orbital and q is the doubly occupied
orbital, the fundamental permutation is the following one:

12...p—-1gp+1...q—1gqqg+1...N

(in this example p < g). Since the charges are always on adjacent atoms, the parity
of p and ¢ are different so the spin assignement to the p-th and g-th electrons
are o and S or B and « according to the fact that g is even or odd. Then in the
superposition diagrams the fundamental permutations always correspond to spin
matching. When the matrix elements H; and A}; have been calculated (see next
section) the secular determinant and Egs. (2) have been solved, we obtain the
ground state function

R L.
'Po= Z z CO,r,l(b;' (3)
r=11=1

The charge and spin densities at position r are given by the following expres-
sions {9]: )

QM) =P M)+ P (1 )
and

o) =P (1) —P(r) 4)
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where P* and P~ are the o and f spin electron density, respectively, defined as
follows:

PE=N{|¥(r, 30,0, ... ry, 092 dt, ... d1y %)

where the integration is over spin and space coordinates of N —1 electrons.
By substituting ¥ in Eq. (5) from Eq. (3) we get:

t= ZZCOHCOS]N.‘.q)z (r1a+2" 'rNawN) (Pj'(rla i%;"'rN’wN)dTZ"'dTN
r,s i,j (6)
= ZZ COrtCOSJPrs+(r)'

rs i, j

If a and b are two of the available atomic orbitals, we may write
Pt (r) = 21 P (a, bya*(r)b(r) 0

and hence

Q(F) Z a*(r)b(r) z Z COn COS‘]{P"_’]'S+ (a> b) + Pi';’is_ (aa b)}
r,s i,J (8)
= Zb a*(r)b(r)Q(a, b),

e(r)y =Y, a*(nNb(r) . ), C§,:Coy{Pi;* (a, b)— Piy~(a, b)}
a,b r,S i,j (8/)
= \21, a*(r)b(r)e(a, b),

where the sums are over all occupied orbitals, and all structures.

Calculations

The matrix elements H};} appearing in Eq. (2) are built by a combination of
many integrals; these can be divided in four classes:
a) Coulomb integrals:

Q) =<a()b(2)...|#)a(1)b(2)...> . 9)
b) Exchange integrals:
g(r) = (a(1)b(2) ... |#|b(1)a(2)...> . (10)
c¢) First order electron transfer integrals,
Ty (r, 8) = {a(D)b2) ... | #|a'(1)b(2)...> . (11)
d) Second order electron transfer integrals:
Ty 101, 8) = {a(1)b(2) ... |#)a'(1)b'(2)...> (12)
T,(r, 5) =<a()b(2) ... |#|a’(1)b(2)...) . (129

In the preceeding formulas a and o', b and b’ are centered on adjacent atoms, a
and a” on next neighbour atoms.

2%
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To simplify our formulas for matrix elements all integrals in classes b, ¢, d,
have been assumed to be independent from the electron distributions u and v.
The various integrals have been actually calculated for all cases and the numerical
values are so close that the above assumption and the use of an average value for
each kind of integrals is amply justified. Besides, all the integrals of the type £ and
7,4 have similar values and their averages are also very close so that one general
average value has been used for both. In particular it can be shown [10] that
second order transfer integrals <a(1)a(2) ... || a'(1)@’(2)...) are equal to exchange
integrals {a(1)a’(2)...|#|a’(1)a(2)...>. For coulomb integrals the value cor-
responding to the non polar distribution is significantly different from values for
polar distributions, which are all very close to each other so that two values have
been used: Q for the non polar distribution and Q’, the average value for polar
distributions.

To summarize, the following integrals appear in matrix elements for the energy
operator:

0,061 and 7, .
In the same approximation, two average values for the overlap integrals are used:
S=<{alay and § =<ala"). (13)

To calculate the integrals the geometry of the system is needed. Our assumed
geometries are given in Fig. 1, together with the numbering of the atoms.

(® (b)

Fig. 1. Numbering of atoms and geometries of (a) allyl radical, (b} butadiene, (c) benzyl radical. Bond
length in A, bond angles in degrees

The formulas for matrix elements
Hi; = {p}1# )0} > (14)
A% = <@l o3> (14)

and P}*(a, a) can now be written. Three different situations occur:
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a) r=s. Then
1
Hij = =1 [Q*Jr Z (140,419, f(u, v)t-:], (15)
Ay = =t [1 + ZZU (1+8,,+ 8, f(u, v)SZ}, (15)

1 1
Py * (@ @) = (1= 0,,) (1+ 5aq>§r——i{—z + Ao
(15)

+8 [Zf(u,v)(1+5,,q+5,,q)( +A“)

uvFp

+ 044 Z"f(u, a) ( + A2 ):!}

Q* is equal to Q(Q') if r is a covalent (ionic) distribution. 3’ is over all pairs of
orbitals centered on adjacent atoms; Y ” is over all orbltals adjacents to a; d is the

1fN is odd; i is the

Kronecker symbol; n is equal to N/2 if N is even or

number of islands in the superposition diagrams for the two structures in the
fundamental permutation; f(u, v) is equal to 1 if orbitals u and » belong to the
same island, and equal to —1/2 if they belong to different islands. 47, is equal to 0
if the orbital in position x and the phantom orbital w are on dlfferent islands, in
the superposition diagram, is equal to 1/2 if x and w are in the same island an
odd number of bonds apart, is equal to —1/2 if x and w are on the same island
an even number of bonds apart. When yz is equal to 00 the fundamental permuta-
tion of both structures must be used in the superposition diagram, otherwise the
fundamental permutation of structure i must be superimposed to the permutation
of structure j obtained from the fundamental by exchange of orbital y and z.
b) r is the covalent distribution and s one of the polar distributions:

HyS = /2 Ars = V2 S, (16)

gn-i T, Y on—i
1 2
Pir’,jsi(a, a)=(1-97,, (? J_rAgO)—zl{—:TS. (16)
¢) r and s are two different polar distributions:
1
H{’; = on—i [2- 26pp’ - 5qp’ - 5pq’)8 + 2(5pp' - 5qq’)Tq] > (17
a7 = 2n S [2— 25 _5pq')sz + 2(6171” _54111’)8] ’ (17)

28 . , "
Pf(a,a)=(1— 5ap)< 00)3’? if p=p, (17"
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2 (1
Pij*(a,0) = (1= 60, = b0p) it {(7 iA':,o>s2

S’ (17’//)
—[1+ 5aq +24%,(1 — 5,1,1)]_2‘} , if g=¢q
r.st S2 1 4
Fii=@,0) = (1=04 = 00p) mumr | 5 £ 450 ) (2= 6,650)
(17/”/)

if p#P and g#q'.

Primed and unprimed p’s and g’s refer to the two structures.

Results and Discussion

A. Benzyl Radical

The spectrum of this compound has been analyzed by Carrington and Smith
[4] who obtained the following absolute values for the hfs constants: a, = 16.35,
a;=5.14, a,=1.75, as=614. Theoretical values of these quantities can be
obtained from the corresponding spin densities g; through the McConnell’s
relationship

a; = Qo (18)
where Q is given by '
2a,+2a;3—2a, +as
20, +203+ 204+ 05

0= (19)
Theoretical values of a; had been previously obtained using the VB method with
inclusion of 5 or 14 covalent structures. The agreement with experiment is worse
when 14 structures are used and this fact was considered as due to the exaggerated
electron correlation.

We included 70 ortho-polar structures besides the 14 covalent structures. The
values of integrals obtained from the averaging of the theoretical values (see
Appendix I) are (in a.u.):

Q=—6850 =—656¢c=—048,7, = —1.82,7, = —0.26, S = 0.2547, ' = 0.0364.

The predicted hfs constants are shown in Table 1, together with previously
calculated and experimental constants. '

Table 1. Predicted hfs constants (in Gauss): Q = 24.28

ay as a, as
5 covalent structures 15.58 7.50 4.03 7.50
14 covalent structures 15.04 9.41 . 592 8.55
14 covalent + 70 ortho-polar structures 14.78 8.94 5.03 8.33
Experimental 16.35 5.14 1.75 6.14

The results are slightly improved with respect to the ones given by the full
covalent treatment, but are still worse than the more simplified calculations. It
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seems that electron correlation has not been reduced as much as it should and
perhaps meta and para polar structures are needed.

It might be thought that the choice of integrals has not been a happy one.
However it has been already pointed out [7] that spin densities calculated by the
VB method are not very sensitive to the values assumed for the integrals. Con-
sidering the integrals as parameters, calculations performed with different sets of
extimated values for such parameters, within reasonable ranges, lead to results
not significantly affected.

B. Allyl Radical and Butadiene

For sake of comparison, two simple systems, allyl radical and butadiene were
treated in the same approximation.

The results for allyl radical can be compared (see Table 2) with values previously
obtained by the a priori VB method [5], and with experimental values, when
available.

Table 2. n-electron energy and spin densities for allyl radical

This work This work Ref. 5 Exp. [11]
6 structures 2 covalent structures
o 0.630 0.677 0.622 0.589
0, —-0228 —0.312 —0.206 —0.155
0./0> —2.76 -2.17 -3.02 —3.80

(a,/a, = —3.54)
E(au) —1.76 —1.70 -1.767

It seems that while present treatment gives a result very close to the one
obtained by the a priori method for the energy, spin densities are significantly
worse. However for allyl radical the benefit inclusion of polar structures is signifi-
cant.

For butadiene a n-electron energy of —2.81 a.u. was obtained, to be compared
with E = —2.85 (cis) and —2.82 (trans) from the a priori method.

Appendix I

As an example we give the values obtained for the different first order electron
transfer integrals, from which it may be seen that the difference between the
different values and the average is always less than 5%.

{abcdefg|H|aacdefgy = —1.8357 (a.u)
{abcdefg|#|bbcdefgy = —1.8476
{abcdefg|#\abbdefgy = —1.7547
{abcdefg|#|accdefgy = —1.7494
{abcdefg|#|abccefg) = —1,8707
{abcdefg|#|abddefg) = —~1.8713
{abcdefg|#labcddfgy = —1.8417
{abcdefg|#|abceefg> = —1.8415
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Appendix 1T

The structures, the symmetry structures and the ground state wave function

(corresponding to E

—~7.04454 a.u.) for the benzyl radical are shown in the

following Tables A1, A2, A3.

Table Al. Structures

1-8 2-7 5-6
1-6 2-5 7-8
1-2 3-6 7-8
1-8 2-3 6-7
1-2 3-8 6-7
1-8 2-7 3-6

3-3
3-3

4

1-2 3-4 5-6 7-8
1-4 2-3 5-6 7-8
1-6 2-3 4-5 7-8
1-8 2-3 4-5 6-7
1-2 3-8 4-5 6-7
1-2 3-4 5-8 6-7
1-2 3-8 4-7 5-6
1-2 3-6 4-5 7-8
1-4 2-3 5-8 7-6
1-6 2-5 3-4 7-8
1-8 2-7 3-4 5-6
1-8 2-3 4-7 5-6
1-8 2-7 3-6 4-5
1-8 2-5 3-4 6-7

2-2 3-4 5-6 7-8

2

5-5
5-5
5-5
5-5

2

4

6

1-6 2-3 7-8

5-5

7

1-2 3-6 7-8
1-8 2-3 6-7
1-2 3-8 6-7

4-4
4-4
4-4

2

10
11

1-8 2-7 3-6
1-6 2-3 7-8
1-6 4-5 3-8
1—-8 6-5 3-4

4-4
4-4

4

12
13
14

7-1
717

10
10
10
10
10
1

2

i-6 5-8 3-4
1-8 6-3 4-5

7-17
7-17

4

2-2 3-8 4-5 7-6

2-2 3-4 5-8 7-6

2

2-2 3-8 4-7 35-6

2-2 3-6 4-5 7-8

4
5

2

i1

i1

3—-4 5-6 7-8

1-1

11

3-8 4-5 7-6

1-1

11
12
12
12
12
12
13
13
13
13
13

3—-4 5-8 7-6

1-1
1-1
1-1
3-3
3-3
3-3
3-3
3-3

3-8 4-7 5-6
3—6 4-5 7-8

1-2 5-8

6—6

1-4 5-6 7-8
1-8 4-5 6-7

4
5

1-4 5-8 6-7
1-8 4-7 5-6
1-6 7-8 4-5
1-4 5-6 7-8

2-2
2-2

1-8 4-5 6-7
1-4 5-8 6-7

2
3

5

2-2
2-2

5-5
5—5
5-5

14
14
14
14

1-8 4-7 5-6
1-6 7-8 4-5
1-2 5-6 7-8
1-8 6-7 5-2
1i-2 5-8
1-8 2-7

2-2
4-4
4-4
4-4

Wy N \D D

14
15
15
15
15
15

617

4-4 5-6
4-4 1-6 2-5 7-8

3-3
3-3

4

2

1-2 5-6 7-8

4

1-8 6-7 5-2

1-2 5-8 6-7

3-3

3
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Table A2. Symmetry structures

P, =& + &}
¥, = oL+ it
¥, =i pl?

¥, =l + o]
¥ =¢‘é
¥ =¢}4

¥, =) — &} + &+ D)

Y, =& — &l + O+ L+ B}, — B,
¥, = @} + D2

lI]m:qj%

¥, = & + &}

¥, =&+ P}

Yis = CD? + (D}O
Vg = %+ @3°
¥, =%+ @i°
Py = &5+ ®3°
Y, =0+ P10
Yo =P + ot

¥y3 =0+ 05!
¥y = 0% + O
Py, =PF+ P2
Ve = PS5 + P32
P,, =5+ P2
Ve = P2+ V)2
P,o= VS + V3
Vo= 9 + P13
¥y, =P+ P33
=P+ w3
P, =P+ ¥
Y=+ P
v,o=WPE+ Pt
Py =75+ V3
Py, = Y5+ ¥*
Vg = V5 + ¥5*
Vo= PE+ Wit
Vo= 90+ ¥1°
Y, =9+ 9"
=9 +9)

P, =&+ o3t
¥, = &3 + 0}

Vs = 3+ ¥5°
Vo= W5+ ¥5°

Table A3. Ground state wave function

= 010242%, +0.06896%, +0.05643¥, +0.00316%, +0.09927%; +0.01162F,

+0.02190%, +0.03316%, +0.04655', +0.03976 ¥, +0.01460 ¥, +0.04953 ¥, ,
+0.04281 ', +0.01516 ¥, , + 0.01810 ¥, 5 + 0.05571 ¥, ¢ + 0.02079 ¥, , +0.03125 %,
+0.01288 ¥, , + 0.01758 ¥, , + 0.05413 ¥, + 0.02009 ¥, , + 0.03055 ¥, ; + 0.01307 ¥,
+0.03039 ¥, ; + 0.01244 ¥, , + 0.05678 ¥, , + 0.05724 ¥, ¢ + 0.01226 ¥, + 0.03057 ¥,
+0.01277%,, +0.05604 ¥, , + 0.05710 ¥, + 0.01212 ¥y, + 0.00654 ¥, 5 + 0.03492 ¥
+0.05932 %, + 0.03794 ¥, ¢, + 0.02047 ¥, + 0.00636 ¥, , + 0.03484 ¥, + 0.05985 7, ,
+0.03798 ¥, +0.02034 %, ,

[y

B DO 00NN B W

—
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